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PREFACEI
This report is an adaptation of the dissertation of Paul Jerry

Latimer submitted to the Department of Physics at The University of

Tennessee in partial fulfillment of the requirements of the degree

of Doctor of Philosophy.

The ultrasonic harmonic generation technique previously used to

measure third-order elastic (TOE) constants of crystals of cubic

symmetry has been extended to measurement of crystals of trigonal

symmetry. The theory for nonpiezoelectric trigonal crystals of J.

Philip [Technical Report No. 22, Office of Naval Research, Contract

No. NOOO14-81-K-0229 (to be published in 1983)] has been combined

with the piezoelectric theory of McMahon [J. Acoust. Soc. Am. 44, 1007

(1968)] to determine the effective TOE constants in a piezoelectric

solid, and a correction has been made in McMahon's expression.

Measurements in weakly piezoelectric quartz have produced values

of CllI and C333 which agree within experimental uncertainty with

values of R. N. Thurston, H. J. McSkimin and P. Andreatch, Jr. [J.

Appl. Phys. 37, 267 (1966)] and R. Stern and R. T. Smith [J. Acoust.

Soc. Am. 44, 640 (1968)] after corrections have been made for the

effect of diffraction on the data. Measurements in strongly piezo-

electric LiNbO 3 have resulted in values which agree reasonably well

with those of J. Philip and M. A. Breazeale [Proc. IEEE Ultrasonics

Symposium, Vol. 2 (1982)] but disagree with those of C. Y. Nakagawa,

K. Yamanouchi and K. Shibayama [J. Appl. Phys. 44, 3969 (1973)].
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There is indication of some sample dependence of the values of both

the second-order elastic constants as well as the third-order elastic

constants of LiNbO 3 samples currently available.

In the course of measurement of the TOE constants a negative

nonlinearity parameter was observed for the piezoelectric [100]

direction in quartz. This peculiarity is impossible for thermodynamic

reasons in fluids, but has been observed once previously in fused

silica [J. Bains and M. A. Breazeale, J. Acoust. Soc. Am. 57, 745

(1975)]. The nonlinearity parameter appears to be positive for the

piezoelectric [001] direction in LiNbO3.

The data presented are for the "piezoelectrically stiffened" TOE

constants; however, there are preliminary indications that the har-

monic generation technique may give access to the constant field TOE

constants C(E)

The author expresses his sincere appreciation to Prof. M. A.

Breazeale who directed this research. Prof. Breazeale's patience,

criticism, and open-minded approach to new areas of research has

given me new insight into the nature of scientific investigation.

The author extends his appreciation to Dr. Jacob Philip for

sharing many experimental techniques prior to initiating this

investigation and for providing much of the theoretical justification

for this investigation.

I am indebted to Mr. Glen Cunningham for his invaluable technical

assistance and advice concerning the electronic instrumentation.
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CHAPTER I

INTRODUCTION

Over the past several years it has become increasingly evident

that a linear theory is inadequate to give a detailed accounting of

the properties of solids. Many basic properties of solids can be

explained only on the basis of nonlinear theory. Among these

properties are thermal expansion, interaction of lattice waves,

inequality of adiabatic and isothermal elastic constants, and the

dependence of the elastic constants on pressure and temperature.

The description of the nonlinear properties of solids is made

in terms of the higher-order elastic constants. The elastic constants

are the coefficients of the terms of a series expansion of the strain

energy per unit volume of the solid in powers of the strains. The

coefficients of the second powers in strains are the ordinary elastic

constants which appear in linear theories and the coefficients of the

third powers in strain are the third-order elastic (TOE) constants

which are the subject of this dissertation. This is a problem of funda-

mental interest to solid state physics: the measurement of higher-

order elastic constants and the correlation of their magnitude with

physical properties. Technological implications are important as well.

The second-order elastic (SOE) constants are determined directly

from the measurement of the velocity of the ultrasonic waves in the

solid; the TOE constants must be measured by a combination of at

least two techniques.

1
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Measu-ement of the dependence of second-order elastic constants

on hydrostatic pressure gives combioations of third-order elastic

constants but does not give the complete set for a particular crystal

symmetry. Lazarus (1949) measured the pressure dependence of SOE

constants of NaCl, KCI, CuZn, Cu, and Al. Hearmon (1953) using

equations obtained by Birch (1947) determined the combination of TOE

constants which could be calculated from Lazarus' data.

To determine a complete set of TOE constants, one can in addition

evaluate the change in ultrasonic wave velocity with uniaxial stress.

This technique, which has some inherent shortcomings, does give a

complete set of TOE constants if the data are used in combination

with hydrostatic pressure measurements. The first complete set of

TOE constants for an isotropic material was made by Hughes and Kelly

(1953) by measuring the change of ultrasonic wave velocity with hydro-

static pressure and with uniaxial stress in polystyrene and plexiolass.

Seeger and Buck (1960) developed a theory for sound velocities in

crystals subject to hydrostatic pressure and uniaxial stress in terms

of SOE and TOE constants for cubic crystals. Bateman, Mason and

McSkimin (1961) performed measurements on germanium and obtained the

first complete set of six TOE constants of a cubic crystal. Since

that time measurements have been made on a large number of cubic

crystals using the uniaxial stress and hydrostatic pressure

derivatives.

The other technique which has been widely used to measure the

TOE constants of solids is the ultrasonic harmonic generation
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technique described by Breazeale and Thompson (1963) and independently

by Gedroits and Krasilnikov (1963). Breazeale and Ford (1965) solved

the nonlinear equation of motion for the case of isotropic solids and

cubic crystals. Gauster and Breazeale (1966) developed the capacitive

receiver which is capable of yielding a combination of TOE constants

from the absolute amplitudes of the fundamental and second harmonic

of a finite amplitude ultrasonic wave as it propagates through a non-

linear solid. Since that time many measurements have been made for

cubic crystals using this technique as reported in a comprehensive

review by Breazeale and Philip (1983). Very few measurements of TOE

constants have been reported for crystals in the trigonal group. As

the symmetry becomes lower (Hearmon, 1979), the number of elastic con-

stants increases. For example, crystals belonging to the 3m, 32, 3m

class in the trigonal symmetry group have 14 TOE constants. McManon

(1968) developed a nonlinear theory for the evaluation of certain

TOE constants of piezoelectric solids by second harmonic generation.

In his theory McMahon evaluates the effect of piezoelectric "stiffen-

ing" upon both the SOE and TOE constants. He shows that the overall

effect of piezoelectricity is to increase the magnitude of both the

SOE and TOE constants. He then evaluates the effective constants in

terms of other higher-order constants of the material. Philip (1983)

extended the linear theory for nonpiezoelectric solids in a very

general way such that the nonlinear distortion of finite amplitude

waves could be described in the case of trigonal symmetry by a

perturbation solution of the nonlinear equation.
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Of the work done on crystals with trigonal symmetry, the

hydrostatic and uniaxial stress derivatives of ultrasonic wave velocity

is the technique which has been used almost exclusively. To the

author's knowledge, no previous harmonic generation measurements have

been performed with the capacitive detector on a material with

trigonal symmetry-except for some preliminary measurements made by

Philip and Breazeale (1982) on lithium niobate.

The first full set of TOE constants for a trigonal crystal was

measured by Thurston et al. (1966). They used the hydrostatic pressure

uniaxial stress derivative technique to determine the 14 TOE constants

of quartz. Quartz is a weakly coupled piezoelectric material in

which the effect of acoustical variation of the electrical conditons

does not make a perceptible change in the measured value of the

elastic constants. Thurston et al. (1966) claimed that the piezo-

electric coupling is weak enough that the effect on their measure-

ments was within experimental error, and therefore they made no

distinction between the TOE constants at constant electric field and

the effective TOE constants they measured.

Stern and Smith (1968) measured the TOE constants of quartz using

a pulse echo interferometer technique, a modification of the uniaxial

stress-hydrostatic pressure derivative technique. Their values were

in good agreement with those of Thurston et al. (1966).

A microwave ultrasonic harmonic generation technique has been

used by Carr (1968) to determine the TOE constants CllI and C33 3 of

quartz and sapphire. The technique consisted of generating a
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microwave ultrasonic fundamental at one end of the sample and

detecting the second harmonic at the other end by the piezoelectric

effect. The quantitative measurements of the second harmonic led to

a determination of the TOE constants. Even though CllI for both

samples agreed reasonably. well with other published data, Carr's

value for C333 appeared to be considerably greater in magnitude than

other measurements.

Graham (1972) described a method for obtaining longitudinal TOE

constants of X-cut quartz: Solids are subjected to shock wave loading

and undergo compression. The shock compression data were analyzed to

determine CllI and Cllll for X-cut quartz. The determination of the

TOE constants under these large compressions allows one to test the

applicability of the finite strain formulation of the constitutive

relations.

The 14 TOE constants of trigonal A1203 were measured by Hankey

and Schuele (1970). They measured hydrostatic pressure and uniaxial

stress dependence of the ultrasonic wave velocity by the pulse echo

technique.

Kaga (1968) measured the TOE constants of trigonal calcite using

a pulse-superposition technique with uniaxial stress and hydrostatic

pressure.

The TOE constants of the strongly coupled piezoelectric trigonal

LiNbO 3 crystal were measured by Nakagawa et al. (1973). A pulse trans-

mission technique was used to determine the velocity of small ampli-

tude ultrasonic waves as a function of applied stress. Piezoelectric
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terms were included in the calcLlation of pressure de'ivatives of

sound velocity in terms of the TOE constants developed by Thurston

and Brugger (1965); however, lack of piezoelectric coefficients pre-

vented evaluation of the constant field TOE constants C(. Hearmonijk Haro

(1979) erroneously reported that the TOE constants measured by

Nakagawa et al. (1973) were constant field coefficients. However,

Hearmon (1979) was correct in pointing out that the measurement errors

reported by Nakagawa et al. was sufficiently large that they cast some

doubt on the validity of the data. In particular, the errors were

largest for Cill and C333. These are the TOE constants which are

directly measured by the technique described in this thesis.

The measurements reported in this study were made on trigonal

crystals with the capacitive receiver. They allow a direct deter-

mination of the coefficients Cill and C333 in trigonal crystals. One

objective in reporting the measurements is to experimentally verify

the theory of Philip (1983) for trigonal crystals. In addition, the

theory has been expanded to account for the effect of piezoelectricity

on the harmonic generation measurements. The expansion of the theory

closely parallels McMahon's derivation of an expression for the

effective elastic constant for piezoelectric materials, but corrects

an error in the final expression by McMahon (1965), an error that was

repeated in the derivation of the next higher order terms by Mathur

and Gupta (1970).

The effect of diffraction on the measurements also is considered.

It is found that even with the large (l" diameter, 1.5" long) samples
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and a D/ ratio of the order of 75, the effect of diffraction,

calculated by the procedure described by Blackburn (1981) cannot be

ignored.

Finally, the nonlinear behavior of the weakly coupled

piezoelectric trigonal quartz is compared with the behavior of

strongly coupled piezoelectric trigonal LiNbO 3.
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CHAPTER II

THEORETICAL CONSIDERATIONS

The theory of second harmonic generation in trigonal crystals

can be developed in a general way, as shown by Philip (1983). The

piezoelectric relations can be derived by making some modifications

of the treatment of McMahon (1968) to make it more thermodynamically

correct (Brugger, 1964). In effect, the present work merges the

theories of Philip and McMahon to yield a suitable composite theory

for the treatment of piezoelectric crystals of trigonal symmetry.

A. GENERAL THEORY OF NONLINEAR WAVE PROPAGATION IN SOLIDS

Consider a point P in the medium with coordinates ai (a,b,c) in

the unstrained state (Philip, 1983). Let P move to P' with

coordinates xi (x,y,z) in the deformed state.

The components of the displacement can then be written as

u =x- a

v~y-b

w~z-c. (1)

In the Lagrangian formulation, the strain is described in terms of

the initial or undeformed state, and the initial coordinates ai of the

material particle are taken as independent variables. The Lagranian

formulation is used exclusively in this development.

8
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The Lagrangian strain parameters which are components of the

finite strain tensor are given (Murnaghan, 1951) by

n 1 (J* J - I) (2)

where J is the Jacobian matrix given by

1 + ua  ub  u
l a Ub U

J = va l + vb vc (3)

wa wb c + wc

and where ua = Ub = 2u etc., J* is the transpose of J, and I is

the unit matrix.

Let (i) be the strain energy per unit of undeformed volume.

The properties of the crystalline medium enter into the theory

through the strain energy o(n) which can be expressed in terms of

the ordinary elastic constants by proper rotation of the coordinates

C
0 + ijij + 2 nijnkk

+Cijk~mn

+ J3! ij)kz mn + (4)

(Summing over repeated indices is implied.) The first two terms

vanish since 0 is the energy of the unstrained medium and €I =Cij ij

corresponds to displacement without deformation. Therefore, the

expression for the strain energy becomes
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€= nijnkL1L+ ijk~mn

'ij~kZ 3! nijnkinmn + " (5)

where the strains are to be evaluated with coordinates along the

propagation direction, the Cijk are the second-order elastic (SOE)

constants and the Cijkmn are the third-order elastic (TOE) constants

(Brugger, 1964).

The SOE constants form a fourth rank tensor containing 81

components, of which 21 are independent for the most unsymmetrical

triclinic crystal and the TOE constants form a sixth rank tensor with

729 components of which 56 are independent for the triclinic crystal.

The number of elastic constants greatly decreases for crystals of

higher symmetry. For the class of trigonal crystals under con-

sideration there are 6 SOE and 14 TOE constants.

The equations of motion in Lagrangian coordinates are written as

(Philip, 1983; Thurston and Bruager, 1964)

3a Oi(6)Ba. i

where Po is the undeformed mass density.

The equation of motion takes the following form along the a, b,

and c axes of the crystal:

T ;TI 2  aT
'Ta + +

ZO : T -T- ;T

hT21 +T 22 +T 23"" + + c (7)

• .T31  + T32  + aT33
w -



The stress matrix T can be written as

T11  T12  T13  J11 J12 J13 )nl Th12 Bn3

T21 T22 T23 = 121 J22 J23 921 n22 '923 (8)

T31 T32 T3 3  J31 J32 J33 3131 l 32 ;33

Note that the Tij tensor defined here is not symmetric. Consider

the case of plane finite amplitude waves propagating along the three

axes of the medium under consideration. For plane waves propagating

along the a axis, the displacement component becomes

u : u(a, t)

v = v(a, t) (9)

w = w(a, t)

and the equations of motion for this case become

aTl IPO T U = a (longitudinal wave)

aT2aO 21 (transverse wave) (10)

a31  (transverse wave)
0w=aa

For longitudinal plane waves propagating along the a axis v : 0

and w 0 0, so that one is left with

;T11
=0 aa = a

hh. . - .. . . ... ....
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Similarly, for plane waves propagating along the b axis

PO T b (transverse wave)

a

22 (longitudinal wave) (12)

aT3

00 - 'b32 (transverse wave)

For longitudinal waves along the b axis u = 0, w = 0, and we are left

with

= T22  (13)

For plane waves propagating along the c axis

ITIPO a : = c (transverse wave)

aT2
O = IT23 (transverse wave) (14)

aT33

PO = T 33(longitudinal wave)

For longitudinal waves propagating along the c axis u = 0, v 0 and

we are left with

= aT3 3  (15)

These equations are solved for crystals belonging to the trigonal

class in the next section.
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B. SECOND HARMONIC GENERATION OF ULTRASOUND
IN CRYSTALS OF TRIGONAL SYMMETRY

There are two classes of trigonal crystals (Philip, 1983), one

with Hermann-Mauguin symmetry symbol 33 and the other with symbol 32,

3m, 3m. The first class has seven SOE constants and twenty TOE con-

stants and the latter has six SOE and fourteen TOE constants. Since

the crystals of interest in this investiaation, quartz and lithium

niobate, belong to this class, the class 32, 3m, 3m is considered

excl usively.

The unit cell of a crystal with trigonal symmetry is shown in

Figure 11-1. A rotation of the coordinate system by 1200 about the

[OOl] axis leads to an equivalent coordinate system. In the linear

approximation, pure mode longitudinal waves can propagate along the x

and z directions. It is a quasilongitudinal wave which propagates

along the y direction since the longitudinal mode is coupled to one

of the transverse modes. The elastic strain energy for the trigonal

case* is (Kaga, 1968):

L:( = t() - €(O) : ¢2 + (3 + "' 1 2 2

2 3 2 C 11 (-) 1 + rl22 ) + C1" 1'2

+ C1 3('22133 + '33ll) + C14{(.ll - P22)("23 + + (_'31 + ni3)

11 2

("12 + n'21)} + 233"33

2C 2  2 2 2 (C1 _ 2 + 2

44("23 + n32 + n31 + 132 + 2 1 1 - 12)(712  21

*The elastic constants are expressed in terms of a contracted

notation (Voigt, 1928) in which 11 - 1, 22 - 2, 33 - 3, 23 - 4,
13 - 5, and 12 - 6. This means that the SOE constants have two sub-
scripts and the TOE constants have three.
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C -AXIS

TRIGONAL STRUC TURE

Co - ordinate [01

Fr-m e Cb-ai

b (b)

I For trigona1,
c= b =c (c) Set of equivalent

I cY =9= Y 720, ~9Q0 directions In a
c)/,< 7001 900trlco'MoI 5S tern

I Figure Hl-1. The coordinate system for crystals of trigonal symmietry.
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+ +2 + Q ( I  2 26Clnl + -Cl2nl 1nT22 1'M l r33 +n22 nll

1 2
+-CI14nll (" 2 3 + 32+ C1 2 3 nln 2 2 n 3 3 + C1 2 4 {'nl 2 2 (n 2 3 + r32)

+ ("23 '3+ -1 + n 2)

+1 2
+tC 133 '' 33 (INl + T2)+ C134 ri3 3{(" 11 - r22)(r23 + 132)

2 2)

+ ('131 +  '13)("12 + n121) + 1 4 r2 + r3

+ 122(-131 2 + n2) + C 15 5 22 2 3
2 + 32 2) + )1 (12+ Tl3 2

+1 3 132 2
322222 + t*C333 133  + C3 4 4n 3 3 ("23 + "32

+ 2 3 - 2 2

+ 2(31 + 132 + C444 6L( 23 + n 32) T 23 + r32(31 + 13)
* L(C + (n3 + 2

S(cil 1 1  2  C222)r22
2 nll

+1(- 2 +1(2C+3
(-C114 - 2C124)122 (123 + n32) + i(-2Cll - C112 + 222

(!122 2 2 ) + 1(2Cll - C 2  - M )

2) + 1 C - 2 + 2 + 1(C

22(712 + 21 1(C1 3  2 3)n3 3( 12  +21 14

+ 3C1 24 )' 11 (T 31 + n13)(1l2 + n21)

+ l(C 114  C1 24 )n 2 2 ("' 31 + '13)('12 + 121) + l(-Cl 44 C15 5 )I
(123 + T32)(131 + )13)(1l2 + r21) + -... (16)

The strain derivatives were calculated (Philip, 1983) and from those

derivatives the components of the stress tensor were obtained. From

that point the equations of motion were found for pure mode

I
I
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longitudinal waves propagating alorg the symmetry directions [100] and

[001] which are, respectively, the a and c axes.

It is found that the equation of motion has the same form in

each case

rOu - 'uaa : Uauaa (17)

with different values for the a and for different directions. This

equation shows that pure mode longitudinal waves propagate along these

directions. The effect of the nonlinear term Uauaa is to be

determined.

A perturbation solution was obtained by Philip (1983) similar to

the technique used for the case of cubic symmetry. Let:

u = u0 + u, (18)

where u' << u0 and use the trial solution

u0 = A sin(ka - wt) (19)

and

u" = B a sin 2(ka - wt) +C a cos 2(ka - wt)

as the perburbation term. After one iteration the solution of the

equation of motion becomes

u(a,t) = A sin(ka - wt) - [ kA02]a cos 2(ka - wt) . (20)
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The equation of mot:on also can be writtei as

W ,2u 2u u ;2u (21)
.t2  a2  9am2 "

Breazeale and Ford (1965) arrived at the same equation from the fluid

analogy of cubic crystals but divided the nonlinear terms as follows:

Z0 2 = K + K3  u2(22)

2t 2(a 2  3a 2  3a ;a2

or

-2 2 2W-2,u K 2 (3 u 2u (23)

;t 2 2 - (3K2 + K3) M a a2 "

The equations are the same if ci K2 and

= (3K2 + K3) . (24)

Now consider the linear part of the wave equation

-2

'u =u (25)

A 2 2

Comparing with the wave equation

2 22

where CO is the phase velocity, and



S02 a 180 PO

(28)

K2 = " = P0 C02

Thus the solution to the wave equation for trigonal symmetry can be

written

(3K2 + K3)
u(a,t) = A sin(ka - wt) -[ 8K2  ](kA)2a cos 2(ka - ,t).(29)

as long as K2 and K3 previously defined for cubic symmetry are inter-

preted in terms of trigonal symmetry.

As in the case of cubic crystals, we can define the ultrasonic

nonlinearity parameter for trigonal crystals as the negative of the

ratio of the nonlinear term to the linear term in the wave equation.

Thus the nonlinearity parameter is

3K2 + K3
2 \30)

For an initially sinusoidal disturbance at a = 0 the solution to the

nonlinear equation can be written in terms of the nonlinearity

parameter as:
sin~a t) +1 2k2

u = A1 sin(ka - wt) +1 6 cos 2(ka - wt) (31)

where A1 is the amplitude of the fundamental wave and

A2 = 8 (32)

is the amplitude of the generated second harmonic. In terms of

A2 and A,, S is given by

A2  1 (33)

A AI k a
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or,

K3 = -K2(3 + 6) (34)

Therefore, by measuring the fundamental amplitude A1 and the second

harmonic amplitude A2, one can determine which can then be used to

evaluate K3, the linear combination of TOE constants. The parameters

K2 and K3 are given for each symmetry direction considered for

trigonal crystals in Table II-1.

TABLE II-1

THE K2 AND K3 PARAMETERS FOR TRIGONAL SYMMETRY

Direction
of Wave K

Propagation 2 3

[100] Cl C11

[001] C33  C333

C. SECOND HARMONIC GENERATION IN TRIGONAL
PIEZOELECTRIC CRYSTALS

The Nonpiezoelectric Case

The equation of motion

0 Tik (35)
0oUi Dak

also can be written

- a[i a.i (36)o " ak m km
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(McMahon, 1968) 
where the strain 

energy

€ nijnizz + Cijkkkmn
I "" 3! ijk~inmn + *..(37)

It is convenient to follow Thurston (1964), who defines the thermo-

dynamic tension

km = km (38)

so that the equation of motion becomes

i ak  M m  km] (39)

The analysis which follows is made in terms of tkm*

Piezoelectric Solids

Now, consider a piezoelectric solid. McMahon (1968) points out

that if one holds the electric field constant, the strains resulting

from an acoustical disturbance directly produce stresses by means of

the elastic constants. If the electric field is free to vary, the

same result is produced by an indirect process. The applied strain

produces a polarization (direct piezoelectric effect) and consequently

an electric field is produced by means of the electric susceptibility.

This electric field in turn (increased piezoelectric effect) produces

a stress. Therefore as a consequence of the piezoelectric coupling,

oscillating strain fields are accompanied by oscillating electric

fields. These oscillating electric fields contribute to

the terms in the internal energy expression and thus produce changes

in both SOE constants and the TOE constants. The overall effect of
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the piezoelectric coupling is that the second-, third- and higher-

order elastic constants are not equal to the elastic constants

measured at constant applied electric fields. The constants then are

said to have been "stiffened" by piezoelectric coupling.

In a piezoelectric solid the internal energy is a function of

the entropy, strain and electric displacement. In order to have as

variables the entropy, strain and electric field, one introduces the

thermodynamic potential H2 which is the electric enthalpy. One

defines the enthalpy H2 as the difference 0 - EiD i . where € is the

internal energy per unit undeformed volume, Ei the electric field, and

Di the electric displacement (Dieulesaint and Royer, 1980; Graham,

1977; Baryshnikova and Lyamov, 1978). Expanding the enthalpy to

include the elastic, electric, piezoelectric and higher-order terms:

H2  E -~<.~L+Ic(E)2 6 ijkzmnrijrkqmn

1 (S) 1 (S) 1
- cij EiE - CSijki - eijkEijkz -  dijk Ei j k

f E-2 jkm ijkzm (40)

where iii are the strain components and Ei are the electric Field com-

ponents. The superscripts E and S indicate measurement, respectively,

at constant applied electric field and constant strain. The material

constant eijk is the piezoelectric coupling constant. The constants

dijkz and fijkzm are higher-order cross term coefficients. The

physical basis of each coefficient is as follows: c(S) is related toijk
the nonlinear optic and electrooptic effects; dijkz is related both
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to elastooptic and electrostrictive effects; and fijkzm is related to

the electroacoustic effect (change in velocity of sound with applied

electric field). The lack of magnitudes of the fijkzm has prevented

evaluation of the constant electric field TOE constants. It should

be noted that the material constants in the above expression are

functions of the relative frequency of the strain and electric field

components. If both the electric field and strain frequencies lie

in the ultrasonic frequency range, then the value of these constants

is not necessarily equal to either their static value or to their

value at optical frequencies.

The correlation of the magnitude of the oscillating electric

field with the amplitude of the accompanying ultrasonic wave, is

given by* (Baryshnikova and Lyamov, 1978).

aH 2
tij - ij il

2

Di = E (42)
i Ei

Therefore:

*Note that throughout this development contracted notation
(Voigt, 1928) of the indices is not used until the relationships are
developed then contracted notation is used when later on an actual
numerical substitution is made into the relationship.
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c + 17 c(E) e E d
ij ijkz'kz + ijkzmnnkknmn ekijEk " 2 kzijEkE

- fmijkzEmnkz (43)

Di = S)Ej+e i  + I E(S)E Ek +dE ij 'E jknjk 2 ijk + dijkzEjnkU

+ fijkzmjkm . (44)

In addition, a solution to the coupled electromagnetic-elastic wave

problem uses the wave equation derived from Maxwell's equations:

72E i : (45)

solves it simultaneously with the nonlinear elastic equation of

motion:

xi

0 : k [ km1  (46)

and seeks a solution for plane waves propagating along the a1 crystal

direction. The material constants in the expansion of the enthalpy

are then expressed in terms of the orthogonal Cartesian coordinate

system by means of a tensor transformation for rotated axes. In this

rotated coordinate frame, one can write the three component equations

from Eq. (45) as:

(; x H) = 0 (47)

32EP
D p # 1  (48)

1
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In order to get a solution one expands the electric field in

a power series of strain

Ei  ailkn lk + ailklmnlkrnlm (49)

The values of the a's and 's are determined by substituting (49)

into Maxwell's equations. If one substitutes (44) into (47) and

eliminates Ei through (49), one gets the result

0 = I  ( lj)jlk + ellk)lik + 2(S)i zim + dl

2 mljk jl klm + 2 lllm l m

hicher order products of strain and strain

derivatives. (50)

Since ni, is an arbitrary function of time, the first-, second- and

higher-order coefficients must separately vanish. Therefore, one

obtains the following relationships:

Eljajlk + ellk = 0 (51)

C(S),j :I + dl I  . + 1 E (S DL =0 (2

Ej "jlzlm 2jlm ljk jll2klm(dkl 1 + flm 0 (52)

In order to eliminate the time and spatial differentials from

Eq. (45) one assumes a plane wave solution for the electric field

and displacements of the form:
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-i = Ei(l)e + Ei(2)e +

ui = ui (l)e + ui (2)e + ... . (53)

The condition that the exchange of energy take place between the

acoustic and electric waves and their respective harmonics proceeds

sufficiently slowly so that the amplitude change is small in one

wavelength of sound and can be written as:

I ikui() 
(54)

3Ei(l)

a << ikEi(l) (55)

This condition is almost always met in practice, so if one neglects

the slow change in amplitude, then the spatial and time derivatives

are proportional to one another. This can be expressed as:

k
da 1(56)

If this relationship is satisfied, Maxwell's equation for the

transverse electric-field components can be integrated immediately

with the result

EEp Dp (57)

where we have defined
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E= I (k)2 
(58)

By substituting Eqs. (44) and (49) into Eq. (57), Eq. (57) can be

written as

(aplklk + Bpklm lklm) : ((S)ajl l e+ plk)slk

+ (E .' + d 1 (S)I
pjlklm dpjlkajlm 2 pij ilkajlm

+ 1 f(59)
2 fplklm)nlklm .

Because the strain components are arbitrary functions of time the

linear and quadratic terms are separately equal to each other. This

gives the remaining relationships necessary for the determination of

the a's and S's:

E k E(S) e k (60)Epl k = i pjl J pik

EPlklm = pj lklm + dpjlkajlm

+ IE(S) + 1 f (61)
pijoilkajlm + plklm

When the second order terms are retained intheenthalpy, the

solution of five simultaneous equations [(46) and (48)1 nsists of

five normal modes representing the quasitransverse electromagnetic

waves. The presence of piezoelectric coupling therefore only slightly
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g affect, the characteristics of the acoustical and electromagnetic wave.

Adding higher-order terms to the enthalpy still does not affect the

resolution into quasielastic and quasielectromagnetic waves. There-

fore if one considers only the quasiacoustic wave motion and one

Irepresents the velocity of light and the velocity of sound in the
medium by the respective symbols c and v, one can write

U-=k 2 1 (62)

v

whereas u( S) << uE. Since the first term on the right-hand sides
ij 2

of Eqs. (60) and (61) are smaller by a factor of (v/c) 2 than the

respective terms on the left-hand sides of the equations, one can with

little error simplify these equations to read:

(plk = e.lk/C (63)

= dpilk + 1l (S) a + f (64)

plklm pl krn Im 2pij 2 plklm

Comparing Eq. (51) with Eq. (63) shows that

aplk '< Ic'llk! 1 (65)

which can be used to obtain the following values for the coefficients:

Il e ellk 0plk 0 
(66)llk EllT

jA comparison of Eq. (64) and Eq. (52) similarly shows

I
I
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I plklm << %lklm (67)

I Equation (52) can be solved to give

(S i l k l1M - ()Ellallkallm - fllklm (68)ll Iklm' -dlllk111

From Eq. (67) one can assume

p 0 =0. (69)plklm

Comparison of the relative sizes of the coefficients ajlk and

2
jlklm shows that E2 and E3 are smaller than El by the ratio (v/c)

Consequently, one makes the approximation E2 = E3 = 0. The value

for E, then is found by substituting Eqs. (66) and (68) into Eq. (49).

The result of the substitution is

dlk lllkell. 1 lle llk11l
E I - 'Ik + S) 2 (S)e3

- -l f (70)

i The next step is to substitute the value of E into the expression

for ti. For elastic waves traveling along the a1 axis, ti , defined

I by Eq. (41), is

: C ic l'nl9 - e lij (I)dllijE1 2 flij- El

+IC(E) (71)
I + 2Cijl~imnlZnlm•

I

i
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If El is eliminated using Eq. (70)

t [C(E) +l e n [C(E) J l. I ellkellZelijij [C +  - (S) jnlk + 2 '1klL lkz I (S)3

fllzIk e lij 2 fli l ellk 2ell e lijdlllk"(S) + (S) i ()
E11C11 (E1 S

ell~ ellm dlli * 
72(EM) 2

e11 Q d . (72)

Comparison with the nonpiezoelectric expression derived from

substituting into tkm = k gives the following result:

= C(E) e / (S) (73)Cijlk ijlk I ellk ljk 11

(S)e e e e
c C c(E) +ill llk llm lij + lijillklm
ijlklm : ijlklm (S) )3 E(S)

2ellkflijlm  2ellke I d e e llmdllij
+ (S) llim e l 2 (74)

11 El I7II
The only change that is made necessary by the use of piezoelectric

crystals, then, is that the elastic constants are reolaced by the

effective elastic constants given above.

Now, consider elastic longitudinal waves traveling along the

(piezoelectric) Z axis of LiNbO 3. Using the condensed Voigt notation

one gets

(E) + [(e3 s 2 () (75)
C33 3 33) 33
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C C(E ) + (S) C(S) 3 + 3f 333e 33 
2

C333 333 333'e33/ 22 e + () "e3d33 ) +

() 333 333 (S
33333

(76)

This expression differs from McMahon's Eq. (34) in the final term.

The conclusion is not affected by this difference. (Mathur and Gupta

(1970) repeat McMahon's expression even though they carry the calcula-

tion to the next higher order term.) The conclusion is that the

effective nonlinearity parameter may be written (McMahon, 1968;

Zarembo and Krasilnikov, 1971; Carr, 1968) as:

8A2  3C33 + C333  (77)

A12 k2a C33

or,

C3-1: -C33(3 + e) (78)
E

It would be desirable to isolate C333 ; however, to date this has

been prevented for lack of experimental values of f333. Since the

X-direction in LiNbO 3 is not a piezoelectric direction for a

longitudinal wave, it is not necessary to make these considerations

with respect to the magnitude of Cll. In quartz these considerations

with respect to C333 are not necessary because the Z-direction is not

a piezoelectric direction for longitudinal waves. For quartz the X-

direction is a piezoelectric direction for longitudinal waves; how-

ever, the difference between Cll1 and C111 is smaller than experimen-

tal uncertainty (Thurston et al., 1966).
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CHAPTER III

EXPERIMENTAL APPARATUS AND PROCEDURE

The ultrasonic nonlinearity parameter 6 is determined by

measuring the amplitudes of both the fundamental and second harmonic

of a longitudinal wave propagating in a pure mode direction in a

solid. Let A1 correspond to the fundamental amplitude and A2 corres-

pond to the amplitude of the second harmonic. In the theory of

finite wave propagation, A2 is proportional to A 2 in the limit of

infinitesimal fundamental amplitude (Thurston and Shapiro, 1967) or

equivalently for an infinite discontinuity distance (Breazeale and

Ford, 1965). Therefore, measurements were made using the smallest fun-

damental amplitude which provided a workable signal-to-noise ratio for

the second harmonic, and an extrapolation to zero amplitude was made.

The frequency of the fundamental signal was chosen to be 30 MHz

as a compromise between two opposing processes. The amplitude of the

second harmonic is proportional to the square of the frequency which

implies that a higher frequency leads to a better siqnal-to-noise

ratio. On the other hand, attenuation and the effects of non-

parallelism also increase with increasing frequency. Therefore,

30 MHz has been found to be the best compromise.

In making nonlinear measurements, the pulse echo technique is

used in order to avoid complications arising from interference

effects.

31



i
32

A. THE ROOM TEMPERATURE CAPACITIVE RECEIVER

gThe absolute measurements of amplitude are made using the

capacitive receiver pictured in Figure III-1. A diagram of the

apparatus is shown in Figure 111-2. The apparatus has a detecting

electrode held in place by a fused silica optical flat in such a way

that it remains insulated from the outer ground ring which is the

electrical ground of the system.

The detector electrode and ground ring are lapped optically

flat to within 2-3 fringes of helium light. The detector electrode

is centered in the ground ring and recessed to a depth of from 5-10

microns below the face of the ground ring. The sample face is also

made optically flat and coated with a thin coating (, 1000 A) of

copper by vacuum evaporation. The sample is then positioned on the

ground ring so that the combination makes a parallel plate capacitor

at the end of the sample with a gap spacing of from 5-10 microns. A

bias voltage of approximately 150 volts is applied to the detecting

electrode through a 1 megohm resistor whose purpose is to limit the

current through the detector in case of arcing.

On the top surface of the sample, an X-cut quartz transducer is

attached with nonaq stopcock grease. The resonant frequency of the

transducer is 30 MHz. The high voltage copper electrode is

electrically insulated from the rest of the apparatus by a teflon

ring. It is spring-loaded to insure good contact with the transducer.

When a plane longitudinal wave is incident on the sample face causing

it to vibrate, the gap spacing is changed and an alternating voltage

is induced between the detecting electrode and ground.

I
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Figure III-1. The capacitive detector.
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Electrode

Transducer

Sam'l e

Receivion Electrode

Figure 111-2. Cross sectional view of the detector apparatus.
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B. CALIBRATION PROCEDURES

The calibration of the capacitive receiver which is required

for absolute measurement of amplitude is done by the introduction of

a continuous wave (c.w.) substitutional signal which replaces the

acoustically generated electrical signal. An R.F. generator and an

R.F. voltmeter are attached to the detector button in such a way that

the capacitive detector is not removed from the circuit during

calibration. The equivalent circuit of the setup is the Norton

equivalent. This is represented in Figure 111-3 where the parameters

of that circuit are defined as follows:

CD is the quiescent capacitance of the detector;

CS is the stray capacitance of the detector;

L is the inductance of the wire leadinq from the banana jack

to the BNC connector (refer to diagram of the apparatus);

Z is the impedance of the resistor located at the base of the

apparatus;

GD is the current generator of the Norton equivalent circuit of

the detector;

GS is the substitutional current generator;

iD is the amplitude of the current produced by the ultrasonic

signal;

iS is the amplitude of the substitutional current;

S is a switch that is opened and closed by turning on and off

the ultrasonic pulse.



I
36

1
I

C

E
0)
5-

0)
E

0)
*0

II
0~
E
'U

U EU

0)

4-,

U S..

C-)

ti

I_ _ U

4-,
C
0)

EU

0~
LJ

1-a) -
C)U
.9-c 0)

1-

Lfl9W
c~c~
-~ U..



37

The series combination of the inductance, the amplifier input

impedance in parallel with the detector capacitance CD and stray

capacitance CSform the total impedance of the detector circuit.

The substituional signal current iS flows through the same impedance

as the acoustical signal current iD.

Peters (1968) showed that the Th6venin equivalent circuit of

the capacitive receiver is a voltage of amplitude

2AV 
bV : (79)

SO0

where A is the amplitude of the ultrasonic wave, Vb is the bias

voltage applied to the detector, and S0 is the static qap spacing.

The amplitude of vibration of the free surface of the sample is twice

the amplitude within the sample because the incident and reflected

waves add. This is where the factor of 2 enters into Eq. (79).

The current amplitude iD produced by the capacitive detector is

related to the voltage amplitude V by

iD = VWC D , (80)

where w is the angular frequency of the ultrasonic wave. By combining

equations one gets the current generated by the detector in the Norton

equivalent circuit (Bains, 1974):

0 2AVb(CD (81)
D = So
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The substitutional gEnerator Gw is adjusted to give the same output

from the amplifier as with the acoustical signal. When this condition

is satisfied,

SiD  = i s  (22)

The current is measured by means of the voltage V s across the

current generator GS and by measuring the impedance of the remainder

of the circuit. The resulting expression for iS is
V 
S

1 -1 (83)
S IZ + [j.(CD + CS) + 50 + j L ]

The quantity Z is the impedance of the resistor located between the

substitutional source and the capacitive detector. The resistor does

not act as a pure resistance at the frequency used in this work; there-

fore, it is necessary to measure the impedance of the resistor at each

frequency used in the measurements. The impedance measurements on R

are made with a vector voltmeter. The sample detector assembly and

I bottom plate are removed from the apparatus and 50- terminators are

connected to the two RNC connectors at the base. A CW variable fre-

quency oscillator (VFO) is connected to the side having the resistor.

Both vector voltmeter (Hewlett-Packard 8405A) probes with isolator

tips are placed at point 1 as shown in Figure 111-4 and the phase

angle between the signals is zeroed and the amplitudes are measured.

Probe A of the voltmeter is then left at point 1 while probe B is

I
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moved to point 2. The VFO signal generato,- is readjusted to obtain

the same reading of the voltmeter A channel amplitude as before and

the amplitude of the B channel and phase between the probes is

measured. This is done for both fundamental and second harmonics.

The impedance Z is calculated from

Z[jC + -I VBI VB2  (84)R l + B ej¢(4

where C is the stray capacitance at point 2, including the probe tip;

R is the resistance of the precision terminator measured with an

impedance bridge; VB and VB are the voltages measured by probe B

at points 1 and 2, respectively, and t is the phase angle. A computer

program is used in which the Lagrange five-point interpolation

formula enables one to calculate IZI as a function of frequency in the

range 20 MHz to 32 MHz in increments of .01 MHz and from 56 MHz to

64 MIHz in increments of .02 MHz. This covers the range in which

impedance measurements are required. The resistor has an impedance

of approximately 10K:. As a consequence, Z is much larger than the

other impedances in the apparatus and to a good approximation

Eq. (83) can be written as

VS
iS . (85)

Therefore substituting into (82) one obtains

I
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VS SO
A 2VC (86)

b!DIZ

or

A2 = VblCD Zl 8,

2S (87)
A1I V S 0 T2T

C. EXPERIMENTAL APPARATUS

A block diagram of the experimental setup used for making room

temperature measurements is given in Figure 111-5. A photograph of

the setup appears in Figure 111-6. An RF oscillator is used to

drive a gated amplifier. The pulses are then passed through an

impedance matching network and a 30 MHz bandpass filter to insure

spectral purity of the ultrasonic wave. The pulsed signal is then

used to drive the 30 MHz transducer which has been bonded to the

sample with nonaq stopcock grease. The pulsed signal from the

capacitive detector is then fed to either a 30 MHz or 60 MHz bandpass

amplifier which rectifies the RF signal and produces an output which

is the envelope of the rectified pulse. The output from the ampli-

fier is monitored with an oscilloscope and the voltage level is

measured with a boxcar averager. The output of the boxcar averager

is proportional to the time average of the input. Therefore, random

noise is averaged to zero and the repetitive signal is measurable

even at levels below the noise level. This signal processing

capability is particularly uspful in measuring the extremely low level

signals from the second harmonic.

I
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After removing the acoustic signal source a substitutional

signal is applied to give an output of the same magnitude as the

signal to be measured. The voltage across the signal generator is

measured with an RF voltmeter. For measurements of the second har-

monic, the fundamental frequency is doubled by a ring bridge mixer

and filtered with a 60 MHz bandpass filter.

The bias voltage applied to the detector is recorded and the gap

spacing of the receiver is measured by measuring its capacitance with

an impedance bridge. From the acquired data, the amplitude of the

fundamental and second harmonic are determined.

D. QUARTZ SAMPLES

The quartz samnles were grown, oriented, and machined by the

Valpy-Fisher Corporation. A photograph of the samples is shown in

Figure 111-7. A description of the quartz samples is given in

Table I-1. The axis of the crystals are oriented to within ( .5°).

The faces are lapped flat to within two fringes of light from a

helium dcharge lamp and parallel to within 15 seconds of arc. The

cube was used to take measurements in the X-, '-, and Z-directions.

It is adequate for measurements in the Z-direction and thus it will

be designated as the Z-cut sample. Measurements in the X-direction

indicated that a larger sample is required to enhance the low level

second harmonic. The cylindrical X-cut sample has a length of

1.5 inches. The receiving electrode as well as the quartz trans-

mitting transducer for the Z-cut quartz specimen is 0.765 cm in
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TABLE III-I

DESCRIPTION OF QUARTZ SAMPLES

Principle Diameter Length
Direction Shape (cm) (cm)

Z Cube 1.4938

X Right 3.8386
circular
cylinder

I
I

I
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diameter. In the case of the X-cut quartz specimen, they have a

diameter of 1.269 cm.

E. LITHIUM NIOBATE SAMPLES

The lithium niobate samples were grown and oriented by Crystal

Technology, Inc. They were acoustic grade LiNbO3 which were machined

into a right circular cylinder (Figure 111-8). For the X-cut sample,

the X-axis corresponded to the axis of the cylinder. Examination

with crossed polaroids revealed no obvious strains. Similarly, for

the Z-cut sample the Z-axis corresponds to the axis of the cylinder.

The shapes and dimensions of the LiNbO 3 samples are listed in

Table III-2. Observations of Philip and Breazeale (1982) indicated

that it was desirable to obtain a longer Z-cut sample in order to

enhance the extremely low level second harmonic observed along this

direction. The Z-cut sample is 1.5" long. The specifications regard-

ing orientation of crystalline axis flatness and parallelism are the

same as for quartz. The diameter of the receiver electrode used for

taking data with the lithium niobate samples is 1.269 cm.

F. PHASE MEASUREMENT

The phase of the second harmonic depends directly on the sign

of the nonlinearity parameter B. A negative 6 indicates 1800 phase

difference from a positive . A negative - is not to be expected in

fluids, as this would violate the second law of thermodynamics

(Lord Rayleigh, 1910). The situation is different in solids, however.

An unambiguous proof of the existence of a negative 6 (in fused

1
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I
I

TABLE 111-2

DESCRIPTION OF LiNbO3 SAMPLES

Principle Diameter Length
Direction Shape (cm) (cmL

X Right circular 2.54 2.5561
cylinder

Z Right circular 2.54 3.E1E5
cylinder
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silica) exists (Bains and Breazeale, 1975). Although a negative

would be an unusual situation, it cannot be ruled out when one is

investigating a new class of solid symmetry, as is the case here.

The general technique for determining the sign of a for an

unknown sample is as follows:

1. A sample whose 6 is known to be positive is placed on the

capacitive receiver.

2. The output of the capacitive receiver is examined with a

phase sensitive detector.

3. Keeping everything constant, the known sample is replaced

by an unknown.

4. A phase shift of 180' in the output of the phase sensitive

detector indicates a negative S.

In these measurements a 100 MHz oscilloscope could actually be used

as a phase sensitive detector since it had dual channel input with

the possibility to add and subtract the two inputs. The experimental

setup for the measurement is shown in Figure 111-9. A Cu[lll] sample

having a known positive e is placed in the capacitive detector. The

output from the capacitive receiver is fed into a directional coupler*

The importance of using a directional coupler is that with a
conventional power splitter one automatically loses 6 DB of signal in
each of the two signal paths. A 6 DB loss for the low level second
harmonic signal would reduce an already marginal signal-to-noise
ratio. With the directional coupler, on the other hand, the loss is
very small in one of the outputs and considerably greater in the
other. The loss in the signal path carrying the 30 MHz fundamental
signal can be great since that signal is extremely large compared
with the second harmonic signal. Therefore, the directional coupler
is a vital component in this experimental setup.
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which splits the signal into two parts. One cf the signals from the

directional coupler is fed into the 30 MHz IF amplifier. That signal

is then frequency doubled and fed into channel A of the oscilloscope.

The other signal from the directional coupler is fed into the 60 MHz

power amplifier which is cascaded with the 60 MHz IF amplifier. The

output of the 60 MHz IF amplifier then enters channel B of the

oscilloscope. The display amplitude for channels A and B are adjusted

to be approximately the same size. The time-coherent signals from

channel A and B are then added together and the channel B invert con-

trol is activated. The result for the case of Cu[lll] is that the

added signal increases in size significantly. This indicates that

one of the signals has undergone a phase shift of approximately

180' in passing through the amplifiers. For comparison, the Cu[lll]

sample is then removed and with everything kept constant the

unknown is placed in the capacitive receiver. If the behavior is

the same as copper, then the unknown e is positive. If the behavior

is opposite to that of copper, then the unknown 6 is negative.

G. VELOCITY MEASUREMENTS

In order to determine K2 one must either measure the velocity

or use the appropriate combination of SOE constants from the

literature. Reliable values of SOE constants exist for quartz, but

not for LiNbO 3. Therefore, velocity measurements are necessary for

LiNbO 3. The pulse overlap technique is used with the same experi-

mental setup as shown in Figure 111-5 (p. 42). The pulse width from

the gated amplifier is broadened until an interference pattern is



53

produced. As the frequency of the VFO is changed, the pattern goes

through a series of maxima and minima (Figure Ill-10). The minima

are counted in a given frequency interval. The velocity c is then

calculated from c = 2fwhere Af is the change in frequency corres-A~n

ponding to the number of minima An, and L is the length of the

sample. The computed value for velocity is corrected for the presence

of the transducer and bond by essentially the technique used by

Williams and Lamb (1958).
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CHAPTER IV

RESULTS AND DISCUSSION

In this chapter the results of measurement of the nonlinearity

parameters and TOE constants of quartz and LiNbO 3 are presented.

Most of the measurements were made with samples which are 1" diameter

right circular cylinders and transducers having a diameter of 1.27 cm.

In previous investigations with crystals of cubic symmetry this size

has been assumed to be large enough that the infinite plane wave

assumption is valid, so that no diffraction correction is necessary.

The present investigation shows that in fact diffraction causes a

perceptible change in the measured nonlinearity parameters of quartz

and LiNbO 3. Our data are corrected for diffraction. Interesting

and unexpected properties of quartz and LiNbO 3, such as a negative

nonlinearity parameter, are considered in connection with interpreta-

tion of the data.

A. NONLINEARITY MEASUREMENTS OF QUARTZ
IN THE Z-DIRECTION!

The results of the measurements of nonlinear distortion of

ultrasonic waves in quartz in the Z-direction are listed in

Table IV-l. A plot of A2 vs. A12 is given in Figure IV-l. The line

drawn through the experimental points is the linear least squares fit

of data points. The correlation coefficient, given as a measure of
mo

how well the line fits is defined as: correlation coefficient x x

y

55
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2 Irtercept 0.310 x 10- m

7 Slope = 9.495 x 106 i -1 0

Correlation Coefficient 0.995
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A12 x10 - 2 1 m2

Figure IV-1. Graph of A2 vs. A1
2 for Z-cut quartz.
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where m is the slope, ox is the standard deviation of the x array of

data points, and o is the standard deviation of the y array of dataY

points. Possible values of the correlation coefficient may range

from -l to +1, with a perfect fit corresponding to either ±1. The

value of .995 indicates an excellent fit. The fact that the line

does not exactly intersect the origin results from residual amplifier

noise (Bains, 1974) but does not have a perceptible effect on the

evaluation of the nonlinearity parameter.

A plot of the nonlinearity parameter as a function of the

fundamental amplitude is shown in Figure IV-2 in which an extrapo-

lation to zero amplitude is made. The extrapolated curves approach

the ordinate with a horizontal tangent (Yost, 1972). The extrapolated

value of z is now corrected for diffraction. The diffraction

correction which is used (Blackburn, 1981) is one in which the furda-

mental signal is corrected with linear theory. The effect of

diffraction on the second harmonic is neglected as a first approxima-

tion. The correction is applied to the nonlinearity parameter of the

Z-cut quartz sample in the following form:

D 2corrected =  uncorrected L

where D 2= correction term. The value obtained from data in

Table 111-2 (p. 49), is used to evaluate this term. For the

Z-direction in quartz DL2  .8136. The uncorrected value of

S= 6.00 was diffraction corrected to give a value of 6 = 4.88.
z z

This value is used with the SOE constants from the literatureI
I
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(McSkimin et al., 1965) to calculate the TOE constant:

C = -8.34 ± .55 x 1O dynes/cm2

B. NONLINEARITY MEASUREMENTS OF QUARTZ
IN THE X-DIRECTION

The results of the measurements of the absolute amplitude of

ultrasonic waves of quartz in the X-direction are listed in Table IV-2.

A plot of A2 vs. Al2 is given in Figure IV-3 in which the straight

line is a least squares fit of the data. The correlation coefficient

of 0.9995 indicates an almost perfect fit of the data and the inter-

cept is even smaller than observed in Figure IV-I (p. 57). The size

of the samples and transducer used for all other measurements were

great enough that the plane wave approximation would have contributed

a certain amount of systematic error. In order to eliminate this

approximation, the diffraction correction was applied in each case.

The uncorrected nonlinearity parameter ax was plotted versus A1 in

Figure IV-4. The curve is extrapolated to zero amplitude to give the

most reliable value for the uncorrected Bx = -.636. The correction

factor is DL2 = .8263. Therefore, the diffraction corrected value

is 3x = -.526. The experimental value of 6 and the SOE constants from

the literature (McSkimin et al., 1965) are used to calculate

Cill = 2.15 ± .06 x 1012 dynes/cm2 . The Cill constant for quartz is,

strictly speaking, the piezoelectrically stiffened coefficient. How-

ever, Thurston et al. (1966) found the piezoelectric contribution to

quartz in the X-direction to be within their experimental error.
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Figure IV-3. Graph of A2 vs. AI2 for X-cut quartz.
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Similarly, no distinction is made here between the constant field

coefficient of X-cut quartz and the effective coefficient.

C. THE BEHAVIOR OF QUARTZ IN THE Y-DIRECTION

The Y-direction for crystals having trigonal symmetry is not a

longitudinal pure mode direction. The Y-direction corresponds to

a quasilongitudinal mode coupled to a shear mode. As a consequence

of this coupling, no quantitative data for the determination of

TOE constants can as yet be obtained in this direction using the

capacitive detector. However, the Y-direction for both quartz and

lithium niobate made a very distinctive and easily recognized

pattern usina the capacitive detector. A comparison of the

behavior in the Z-direction with that in the Y-direction is given

in Figure IV-5.

In the Z-direction in which a longitudinal wave propagates, the

amplitude decays exponentially. In contrast, in the Y-direction in

quartz the amplitude increases to a maximum value, then decreases.

Evidentally there is very little energy initially in the longitudinal

mode but upon successive reflections the pulse amplitude grows,

apparently as a result of mode conversion upon reflection. The

amplitude decreases, probably as a result of both attenuation and the

conversion of energy back into the transverse mode (which is not

detected by the capacitive receiver).



65

Typical pulse train for a pure
mode longitudinal wave

(b) Val A T, J i i, 12. &1I SATI

Typical pulse train for coupled modes
in the Y-direction of quartz

Figure IV-5. A comparison of the pulse train for quartz in the
Z- and Y-directions.
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D. DISCUSSION OF RESULTS FOR QUARTZ

Measured values of the nonlinearity parameter of quartz are

listed in Table IV-3, where a for quartz in the X-direction is found

to be negative, an unusual situation. The fact that B is negative in

this case was concluded from evaluation of the data of Thurston et al.

(1966) and comparing with our measured data. Such a behavior has been

observed only once before, with fused silica (Bains and Breazeale,

1975). It has not been observed with crystals hdving cubic symmetry

and hence is of considerable importance to the interpretation of data

on trigonal crystals. This behavior implies that the second harmonic

is 1800 out of phase with the fundamental and hence the distortion of

the wave form is toward a backward sawtooth wave instead of the usual

forward sawtooth encountered in the case of a positive nonlinearity

parameter. The phase of the second harmonic is not routinely deter-

mined in the experiments. For fused silica this behavior implies that

C il is positive; however, in quartz Cll still is negative, as can be

seen from the expression Cill -C11 (3 + s).

If 16! < 3, then a negative B will not cause a reversal in the

sign of Ci1 I. However, if 161 > 3, then, a negative C implies a

positive C 11 . In the measurements, then, a misinterpretation of the

sign of a can cause errors in both the sign and the magnitude of CI11

for crystals of trigonal symmetry! Our measured velocities in the

quartz samples agree very closely with those given by McSkimin et al.

(1965). McSkimin's SOE constants therefore were used for the calcu-

lation of the TOE constants in this experiment. The SOE constants,

I
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TABLE IV-3

VALUES OF THE NONLINEARITY PARAMETERS FOR QUARTZ

Sample Orientation

Z 4.88
X -0.526

along with the calculated TOE constants of quartz are listed in

Table IV-4. The uncertainties listed with the constants are the

random uncertainties. They were calculated from the standard

deviation in the nonlinearity parameter. The random error was some-

what greater for the Z-direction than the X-direction because the

small cube-shaped samples were harder to align than the large

cylindrical samples. Measurement of the TOE constants of quartz

made by Thurston et al. (1966) using the hydrostatic pressure

technique are also presented in Table IV-4, as are those of Stern

and Smith (1968) who used a modification of the uniaxial stress-

hydrostatic pressure technique.

The agreement among the three sets of data indicates that the

harmonic generation technique is capable of producing dependable

values of CllI and C333 for crystals of trigonal symmetry. The dis-

agreement ranges from less than 1% to approximately 2.5%. The random

error of these measurements is less than 6.5% as indicated.

These data represent the first set of measurements of both Cill

and C333 for crystals having trigonal symmetry using the capacitive

detector. The close agreement with the measurements made of two
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independent groups using different techniques also verifies the

validity of the perturbation solution of the nonlinear equation for

trigonal symmetry obtained by Philip (1983).

E. THE SOE CONSTANTS OF LiNbO3

The value K2 may be calculated from the measured velocity

and density of a sample or, alternatively, one may use a reliable SOE

constant from the published literature. If there is good quality

control of the material; i.e., no sample dependence, then there

should be almost no variation in the observed SOE constants from

sample to sample or from independent measurements. However, there

was a noticeable variation in the SOE constants of LiNbO 3 reported

in the literature as illustrated in Table IV-5. Therefore as a

result of this variation the K2 were determined by direct measurement

of ultrasonic wave velcities in the samples used for measurement of

nonlinearity parameters. The results are listed in Table IV-5. The

SOE constants calculated in this experiment are somewhat lower than

the SOE constants given by Philip and Breazeale (1982) and Nakagawa

et al. (1973). In both of these cases, the density of lithium

niobate was quoted as being p = 4.7 gm/cm 3 instead of the more

accurate value of P = 4.644 gm/cm3  (Cook and Jaffe, 1979).

If a density of c = 4.644 is used to calculate the SOE constants of

Philip and Breazeale (1982) and Nakagawa et al. (1973), then there is

a close aareement with the SOE constants used in the present work as

illustrated in Table IV-6.

I
I
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TABLE IV-6

SOE CONSTANTS OF LiNbO 3 lIING DENSITY D 4.644 gm/cm3

CEI C D

11 3312 21

x 10 dynes/cm2  x 1012 dynes/cm2

Present 1.98 2.48
experiment

Nakagawa et al. 1.98 2.48
(1973)

Philip and Breazeale 1.964
(1932)
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F. NONLINEARITY MEASUREMENTS OF LITHIUM
NIOBATE IN THE X-DIRECTION

The results of the .'asurer-nt of nonlinear distortion of waves

in lithium niobate in the X-direction are listed in Table IV-7. The

plot of A2 vs. A12 for this sample is given in Figure IV-6. The line

through the data points is a least squares fit of the data. The

correlation coefficient of .9996 indicates an almost perfect fit of

the data. The intercept indicates that residual noise is very small.

The plot of the nonlinearity parameter Ex vs. Al' the fundamental

amplitude, appears in Figure IV-7. The curve is extrapolated to zero

amplitude to give the most reliable value for E The uncorrected

value for E is = 7.11. With a diffraction correction factorX X

DL2 = .846, the corrected value for Ex is x = 6.01. The relative

value of the TOE constant is calculated to be C111 = -17.83 ±

12 2
.35 x 1012 dynescm 2

During the process of taking data, a very strong second harmonic

was observed with X-cut lithium niobate. The magnitude of the second

harmonic was much larger than one would expect based on the value of

C1 l1 reported by Nakagawa et al. (1973). Therefore, a photograph was

taken (Figure IV-8) to illustrate the strong second harmonic found

with our samples. Both the fundamental and second harmonic are

illustrated. The second harmonic is apprcximately three times as

large as would be expected from Nakagawa's value of Cll. The slow

decrease in amplitude in the fundamental pulse train results from

the very low attenuation in LiNbO 3. This peculiar property in the

-Am
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13
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1 .A2 Intercept = 0.007 x 1 m

10 Slope = 1.879 x 107 ml1 
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Figure IV-6. Graph of A2 vs. A 2 for X-cut LiNbO3.
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Fundamental, 1 V/cm, l0isec/cm;
Bias voltage = 140 V

(b)

---

Second harmonic, .02 V/cm, lOusec/cm;
Bias voltage = 140 V

Figure IV-8. The fundamental and second harmonic signal from
X-cut lithium niobate.
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material is confirmed by the data of Spencer et al. (1965). The two

pulse trains in Figure IV-8 illustrate the point that the growth of

a large second harmonic is not necessarily associated with a large

attenuation coefficient for the fundamental.

G. VALUES OF NONLINEARITY PARAMETER PND TOE CONSTANTS
OF LiNbO3 IN THE Z-DIRECTION

The results of the measurement of absolute amplitude of the

fundamental and second harmonic of ultrasonic waves in lithium

niobate in the Z-direction are presented in Table IV-8. The relation-

ship of A2 to Al2 is plotted in Figure IV-9. The correlation

coefficient indicates an excellent linear fit. The increase in the

scatter of the data results from the extremely small second harmonic

sional observed in the Z-direction. The small intercept indicates the

very small residual noise. The relationship ex vs. A1 is plotted in

Ficure IV-l0 and the curve is extrapolated to zero amplitude to yield

the most reliable uncorrected value for gz which is =z = 0.444. The

diffraction factor is DL2 = .8082; therefore, the corrected value

for 9z is Fz = .359. The assignment of the sign of Ez and hence the

evaluation of C333 = -8.42 ± .16 x 1012 dynes/cm 2 results from a phase

measurement described in the next section.

H. EVALUATION OF THE SIGN OF ez FOR LiNbO3

In contrast to the situation in quartz, the data of Nakagawa

did not allow an unambiguous assignment of the sign of ez for LiNbO3.
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Figure IV-1O. Graph of 6zvs. AIfor Z-cut LiNbO3.
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Therefore, it is necessary to determine the sign of Bz by direct

measurement. Results of the measurement of the phase of Z-cut

lithium niobate by the comparison procedure (Chapter III) are illus-

trated in Figure IV-ll. It is noted that the behavior for Z-cut

lithium niobate is exactly analogous to the behavior of Cu[lll]. The

effect is not as pronounced for Z-cut lithium niobate as that for

Cu[lll] as a result of the comparatively smaller second harmonic.

The fact that 2 for Cu[lll] is known to be positive indicates that

the 5 for Z-cut lithium niobate is also positive. This particular

measurement is difficult as a result of the very small second harmonic

signal observed in the Z-direction of LiNbO 3.

I. DISCUSSION OF RESULTS FOR LiNbO 3

The measured values of the nonlinearity parameters for lithium

niobate are listed in Table IV-9. The definition of the nonlinearity

parameter presented in this work is consistent with the corresponding

definition for liquids and gases. [It is a factor of three greater

than the expression used by Philip and Breazeale (1982).] The calcu-

lated TOE constants for both X- and Z-directions in lithium niobate

are listed in Table IV-lO.

First consider the X-direction. The standard deviation in Clll

is of the order of 2,. Since the same procedure and setup was used

for LiNbO 3 as for quartz, the systematic error should be of the same

order of magnitude. Therefore, the probable systematic errors should

be no greater than approximately 3". Only two known published vilues
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TABLE IV-9

VALUES OF THE NONLINEARITY PARAM ETER E FOR LITHIUM
NIOBATE (CORRECTED FOP, DIFFRACTION)

Sample
Orientation

X 6.01

z 0.359
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(Nakagawa et al., 1973; Philip and Breazeale, 1982) are available for

comparison with the present measurement of C111.

The measurement completed in this experiment indicates a value

for Cill approximately three times larger than the value given by

Nakagawa et al. (1973). Considering the large magnitude of the SOE

constants in the X-direction, a value for ClI1 of the order of magni-

tude suggested by Nakagawa et al. would imply a very low level second

harmonic signal. However, that is contrary to the very strong second

harmonic signal illustrated in Figure IV-8 (p. 76).

The values of Cll 1 given by Philip and Breazeale (1982) are 10%

lower than measured in this investigation. This difference in part

may result from actual differences in the samples themselves. There

are indications of some sample dependence in the value of the SOE

constants and hence there may be sample-dependent variations in the

TOE constants as well. Refinements in crystal growing techniques took

place in the late 1970s (R~uber, 1978). The sample measured by Philip

and Breazeale (1982) was grown in 1975 by Union Carbide. Our samples

were grown in 1982 by Crystal Technology. Since LiNbO3 crystals are

susceptible to a number of defects such as grains canted by 1 or 2

degrees and/or dislocations, efforts recently have been directed

toward reduction of defect density during crystal growth. The very best

crystals are thought still to have surface dislocation densities from

3 4 210 to 10 /cm2 (R~uber, 1978). Variation in dislocation density can

make the harmonic generation measurement of the TOE constants material

dependent (Truell et al., 1969; Hikata et al., 1965). It is possible,
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therefore, that the harmonic generation technique we have used could

serve as a sensitive nondestructive test for quality control in the

manufacture of LiNbO3 crystals. In order to make this test feasible

one would need to correlate magnitude of a with dislocation density.

Consider next the measurements made on Z-cut LiNbO3. Since the

Z-direction in LiNbO3 is a piezoelectrically active direction, the

TOE constant given in-the present work is the piezoelectrically

stiffened coefficient. The standard deviation of the data is 2%; the

systematic error is estimated to be 3%. Therefore the total error

is of the order of 5%. No comparison is made with Nakagawa's value

for this TOE constant for a number of reasons. First, Nakagawa's

large error bars (two times the value of the quantity measured)

for this coefficient make a comparison impractical. Second,

Nakagawa subtracts some of the coupled terms in an attempt to

approximate a constant field coefficient; however, one of those terms

(whose magnitude is unknown) is left imbedded in the expression for

the constant field coefficient.

One peculiar characteristic of Z-cut LiNbO 3 is the very low level

second harmonic generated. The small value given for Bz (Table IV-9,

p. 83) indicates that lithium niobate in the Z-direction more closely

approximates a linear solid than any other material that has been

previously studied.

Of equal interest is the fact that the second harmonic for X-cut

quartz was also very low. Both of these examples indicate that a very

small second harmonic is present in the direction of piezoelectric
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stiffening. This should be checked with other piezoelectric trigonal

crystals to determine whether or not this is a general property.

Philip and Breazeale (1982) first observed with a capacitive

receiver the fact that a strong piezoelectrically coupled solid,

i.e., lithium niobate, produced a signal with no bias voltage applied

to the detector. This effect was observed in the Z-direction and

also in the Y-direction (in which coupled modes appear that are

strongly piezoelectrically stiffened). A similar effect was observed

with the Z-cut LiNbO 3 sample used in this work. A comparison of the

fundamental signal from Z-cut lithium niobate with and without bias

voltage applied is illustrated in Figure IV-12. It is conceivable

that the signal without bias could represent the piezoelectric con-

tribution to the third-order elastic behavior. The effective TOE

constant takes the following form:

CD33 =c 33 + (piezoelectrically coupled terms)

If the piezoelectric contribution could be subtracted from the

effective TOE constant reported in this work, the constant field

coefficient could be evaluated. The measured ratio of the piezo-

electric contribution to the total fundamental amplitude is .35. The

contribution to the second harmonic without bias is too small to be

measured with existing instrumentation.

Philip actually observed the strongly piezoelectrically

stiffened second harmonic signal in the Y-direction both with and
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Fundamental with bias voltage 1 V/cm

Fundamental without bias voltage .5 V/cm

Figure IV-12. A comparison of the fundamental ultrasonic signal
from LiNbO 3 with bias voltage applied and without bias voltage
applied.
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without bias applied to tile capacitive detector. It is to be assuried

that an adequate refinement of the apparatus would allow one to

observe the piezoelectrically stiffened second harmonic in the other

piezoelectrically active directions in which it is so small.

J. SUMMARY AND CONCLUSIONS

The nonlinearity parameters and TOE constants of quartz and

lithium niobate have been measured and compared with similar measure-

ments published in the literature. Measurements in quartz have pro-

duced results which agree closely with values published prior to this

work (Thurston et al., 1966; Stern and Smith, 1968). This should

serve to verify the validity of the perturbation solution of the non-

linear equation in the X- and Z-directions for trigonal symmetry and

to demonstrate that the use of the capacitive detector provides

reliable data for crystals of trigonal symmetry.

Measurements in LiNbO 3 have yielded results which disagree with

the measurements reported by Nakagawa et al. (1973). A comparison of

the present results with Philip and Breazeale (1982) and the variation

of SOE constants indicates the possibility of some sample dependence.

It is observed that diffraction corrections are more important in the

evaluation of the nonlinearity parameter than assumed for crystals of

cubic symmetry.

A negative nonlinearity parameter is found to exist for quartz

in the X-direction. This is a phenomenon which thus far has been

observed only once before-in fused silica.

?I
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Very small nonlinearity parameters are observed in the direction

corresponding to piezoelectric stiffening. The possibility exists

that this is a general property of piezoelectric trigonal crystals.

The nonlinearity parameter of Z-cut LiNbO 3 is the smallest which has

been measured up to the present time and consequently Z-cut LiNbO 3

more closely approximates a linear solid than any other material does.

There are some indications that for a strong piezoelectrically

coupled solid such as LiNbO 3 the piezoelectric contribution to the

total effective TOE constants may be measured with the capacitive

detector and thus the constant field TOE constant may be determined

in the Z-direction.

I
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CHAPTER V

SUGGESTIONS FOR FURTHER WORK

This investigation has left a number of subjects which require

further study.

1. The variations in the measured values of the TOE constants

of LiNbO 3 suggest the possibility of sample dependence. This point

should be investigated further by making measurements with a number

of samples from different manufacturers including both optical and

transducer grade crystals.

2. There were very low level second harmonic amplitudes

resulting from the essentially "linear" behavior of quartz in the

X-direction and LiNbO3 in the Z-direction. These directions corres-

pond to the longitudinal mode piezoelectric direction for both

crystals. With only two samples one cannot decide whether this is

coincidental or is a general property of piezoelectric trigonal

crystals. Further measurement with the trigonal crystals will be

necessary to determine whether this is a general property. If this

property should prove to be general, then it might have significant

theoretical implications in the study of piezoelectric solids.

3. The measurements reported in this work were made at room

temperature. Especially in LiNbO 3, one finds a strong temperature

dependence of many elastic parameters. Therefore, measurements of

the TOE constants of quartz and LiNbO 3 should be made as a function

of temperature down to liquid helium temperature. These measurements

91
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would provide valuable information about nonlinear properLies of

these crystals which are fundamental to a detailed theory of the

solid state.

4. It has been observed that the stronq piezoelectrically

coupled directions provide a signal from the capacitive detector,

even when no bias voltage is applied. We have not observed this

behavior with materials other than piezoelectric materials. This

subject is worthy of detailed investigation. It is possible that

the piezoelectric third-order elastic constants could be determined

by such measurements. This would give access to constant field

TOE constants. Also, the fijkzm (which have never been measured)

might be separated from the piezoelectric contribution by subtracting

all of the other more easily measured higher-order terms.

5. The significance to solid state physics of the (rarely

occurring) negative nonlinearity parameter should be investigated

further.

i
i
I
I
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